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Abstract
We extend our study of deriving the local gauge invariance with spontaneous symmetry break-

ing in the context of an effective field theory by considering self-interactions of the scalar field and

inclusion of the electromagnetic interaction. By analyzing renormalizability and the scale separa-

tion conditions of three-, four- and five-point vertex functions of the scalar field, we fix the two

couplings of the scalar field self-interactions of the leading order Lagrangian. Next we add the

electromagnetic interaction and derive conditions relating the magnetic moment of the charged

vector boson to its charge and the masses of the charged and neutral massive vector bosons to

each other and the two independent couplings of the theory. We obtain the bosonic part of the

Lagrangian of the electroweak Standard Model as a unique solution to the conditions imposed by

the self-consistency conditions of the considered effective field theory.
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I. INTRODUCTION

Local gauge invariance is taken as an input in the construction of the Standard Model [1].
On the other hand, a gauge-invariant theory with the spontaneous symmetry breaking can
be derived by demanding tree-order unitarity of the S-matrix [2–5]. The modern point of
view considers the Standard Model as an effective field theory (EFT) [1], in which tree-order
unitarity is in any case violated at sufficiently high energies. This motivated us to address
the issue of deriving the Lagrangian of the electroweak interaction from the conditions of
self-consistency of EFT. In Ref. [6] we started with constructing the most general Lorentz-
invariant EFT Lagrangian of three interacting massive vector bosons and a scalar. Non-
trivial relations between the coupling constants of the interaction terms of the most general
Lorentz-invariant Lagrangian of a scalar and vector bosons are imposed by the conditions
of consistency with the second class constraints which must be satisfied by the systems
with spin-one particles [7]. Further restrictions on the interaction terms are imposed by the
condition of perturbative renormalizability in the sense of an EFT and scale separation. The
last condition requires that contributions of higher order terms of the effective Lagrangian
in physical quantities are suppressed by some large scale(s) (for more details see Ref. [6]).
To achieve this scale separation we have to demand that the divergences of loop diagrams
contributing in physical scattering amplitudes generated by the leading order Lagrangian
should be removable by renormalizing the parameters of the leading order Lagrangian alone.

In Ref. [6] we considered three- and four-point vertex functions and required perturbative
renormalizability and scale separation. This led to conditions imposed on the interaction
terms such that we obtained the Lagrangian of spontaneously broken gauge symmetry in
the unitary gauge except that the coupling constants of the self-interactions of the scalar
field remained unfixed. In the current work we analyse one-loop diagrams contributing to
three-, four- and five-point functions of the scalar field and constrain the two free couplings
of the self-interactions.

Next, in close analogy to Ref. [8] we ”switch on” the electromagnetic interaction. By
demanding perturbative renormalizability of the obtained effective Lagrangian, we relate
the magnetic moment of the charged vector boson and the mixing of the neutral vector
bosons to other parameters of the effective Lagrangian. This completes the derivation of the
bosonic part of the electroweak Standard Model in the framework of EFT.

II. FIXING THE COUPLINGS OF THE SCALAR SELF-INTERACTIONS

Here, we continue the study of the most general Lorentz-invariant effective Lagrangian
of a scalar and three massive vector boson fields respecting electromagnetic charge conser-
vation, started in Ref. [6]. Two charged spin-one particles are represented by the vector
fields V ±

µ = (V 1
µ ∓ iV 2

µ )/
√
2, while the third component, V 3

µ , and the scalar field Φ are
charge-neutral. The effective Lagrangian contains an infinite number of interaction terms
and hence depends on an infinite number of parameters. We assume that coupling con-
stants with negative mass dimensions are independent from those of positive and zero mass
dimensions. In Ref. [6] we analyzed the Lagrangian containing only interaction terms with
coupling constants of non-negative dimensions. By demanding conservation of the second
class constraints, perturbative renormalizability in the sense of EFT and scale separation,
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FIG. 1: One-loop contributions to the five-point vertex function of the scalar field. The dashed

and wiggly lines correspond to the scalar and the vector bosons, respectively. Diagrams that

are generated via permutations of external legs are not shown. Blobs indicate the corresponding

one-loop two-, three- and four-point vertex functions. In the last four diagrams only the one-

particle-irreducible parts are taken into account.

we showed that the effective Lagrangian can be written in a compact form

L = −1

4
Ga

µνG
aµν +

1

2
V a
µ V

aµ
(

M − g

2
Φ
)2

− gA1ǫ
abc ǫµναβV a

µ V
b
ν ∂αV

c
β ,

+
1

2
∂µΦ ∂µΦ− m2

2
Φ2 − aΦ− b

3!
Φ3 − λ

4!
Φ4 , (1)

where
Ga

µν = ∂µV
a
ν − ∂νV

a
µ − g ǫabc V b

µV
c
ν . (2)

The value of the parameter a can be changed by shifting the field Φ with a constant value.
For convenience we fix the scalar field such that a ≡ 0, i.e. the vacuum expectation value
of the scalar field is non-vanishing starting at one-loop order. The Lagrangian of Eq. (2)
coincides with the SU(2) locally gauge invariant Lagrangian of scalars and vector bosons with
spontaneous symmetry breaking in the unitary gauge except for the self-interaction terms
of the scalars. As reported in Ref. [6] we checked by explicit calculations that no further
constraints on couplings are generated by the condition of perturbative renormalizability and
scale separation of the three- and four-point functions of scalar and vector bosons alone. To
impose conditions to the two scalar self-interaction couplings we continue our study by a
simultaneous analysis of the three-, four- and five-point functions of the scalar field.

We impose the on-mass-shell renormalization condition, i.e. require that all divergences
in physical quantities should be removable by redefining the parameters of the effective
Lagrangian. As there is no interaction term with five scalar fields in the LO Lagrangian, the
sum of divergences of the one-loop diagrams contributing to the five-point function should
cancel when all external momenta are put on-mass-shell.

The one-loop diagrams which contribute to the five point function of the scalar field are
shown in Fig. 1. We apply dimensional regularization (see, e.g., Ref. [9]) and for calculating
the loop diagrams, we independently use the programs FeynCalc [10, 11] and Form [12]. The
divergent parts of the one-loop integrals have been checked with the expressions obtained in
Ref. [13]. We have checked the generation of all diagrams using FeynArts [14].
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Calculating the irreducible one-loop diagrams shown in Fig. 1 (plus permutations), we
obtain for the coefficient of the divergent part:

45iπ2g5m4

2M5
. (3)

The coefficient of the divergent part of the irreducible parts of the reducible diagrams shown
in the second line of Fig. 1 (plus permutations) has the form

15iπ2g2 (3b2gM + 9bg2m2 + 2bλM2 + 4gλm2M)

4M4
. (4)

Demanding that the sum of Eqs. (3) and (4) vanishes, we obtain

15iπ2g2 (bM + 2gm2) (3bgM + 3g2m2 + 2λM2)

4M5
= 0, (5)

which has two solutions

b = −2gm2

M
, (6)

and

λ = −3g (bM + gm2)

2M2
. (7)

In the following we will show that only the latter solution leads to a self-consistent theory.
To that end we substitute the bare parameters of the Lagrangian with the renormalized
ones and the corresponding counterterms (p = pR +

∑

∞

i=1 ~
iδpi, where p is any of the bare

parameters) in Eqs. (6) and (7) and expand in powers of ~. This generates the following
conditions:

bR = −2gRm
2
R

MR
, (8)

δb1 = −2mRMR (2δm1gR + δg1mR)− 2δM1gRm
2
R

M2
R

, (9)

· · · ,

and

λR = −3gR(gRm
2
R + bRMR)

2M2
R

, (10)

δλ1 = − 1

2M3
R

[

3gRMR

(

−δM1bR + 2δg1m
2
R + δb1MR

)

+ 3M2
Rδg1bR

+6g2RmR (δm1MR − δM1mR)
]

, (11)

· · · ,

respectively. Equations (9) and (11) impose conditions on the divergent parts of one-loop
vertex functions, the divergent parts of which are cancelled by the corresponding one-loop
counterterms (δb1, δλ1, δg1, δM1, δm1).
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FIG. 2: One-loop contributions to the three-scalar vertex function. The dashed and the wiggly

lines correspond to the scalar and the vector bosons, respectively.

FIG. 3: One-loop contributions to the four-scalar vertex function. The dashed and wiggly lines

correspond to the scalar and the vector bosons, respectively. Diagrams that can be generated via

permutations of external legs are not shown. Blobs indicate the corresponding one-loop two- and

three-point vertex functions. In last two diagrams only the one-particle-irreducible parts are taken

into account.

From the calculations of Ref. [6] we have

δg1 = −43

6
π2g3R ,

δM1 =
π2gR (6bRm

2
R − gRMR (59m2

R + 54M2
R))

12m2
R

,

δm1 =
π2 (36bRgRM

5
R + 3g2R (−6m4

RM
2
R + 18m2

RM
4
R +m6

R) + 4m4
RM

2
RλR)

8m3
RM

2
R

. (12)

The one-loop counterterm δg1 was obtained by demanding that the three-point vertex func-
tion of the renormalized vector fields for all three external momenta taken on mass-shell
is finite. The same expression takes also care of the cancellation of the divergences in the
four-point vertex function of the vector fields when all external momenta are taken on mass
shell. The counterterms δM1 and δm1 were determined from the condition that the pole
masses of the vector bosons and the scalar particle are finite at one-loop order.

The counterterms δb1 and δλ1 are obtained by calculating the divergent parts of the
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one-loop diagrams shown in Figs. 2 and 3, respectively:

δλ1 =
3π2

4M4
R

(

g2RM
2
R

(

3b2R + 4λR

(

m2
R − 3M2

R

))

+ 12bRg
3
Rm

2
RMR

+ 9g4R
(

m4
R +M4

R

)

+ 4M4
Rλ

2
R

)

, (13)

δb1 =
π2

4m2
RM

3
R

(

9bRg
2
Rm

2
RMR

(

m2
R − 3M2

R

)

+ 8bRm
2
RM

3
RλR

+ 9g3R
(

m6
R − 6m2

RM
4
R

)

+ 36gRM
6
RλR

)

. (14)

By taking into account Eqs. (12) and (14) in Eq. (9) and using Eq. (8), we obtain the
following condition which has to be satisfied by renormalized parameters λR, gR, mR and
MR:

gR (g2R (5m6
R − 54m2

RM
4
R)− 8m4

RM
2
RλR + 36M6

RλR)

m2
RM

3
R

= 0. (15)

The solution to Eq. (15)

λR =
g2R (54m2

RM
4
R − 5m6

R)

36M6
R − 8m4

RM
2
R

, (16)

does not lead to a self-consistent condition. This is because a relation like Eq. (16) can
be satisfied for an arbitrary renormalization scheme only if the corresponding bare cou-
plings satisfy the same condition. This, however, imposes the following condition on the
counterterms

δλ1 =
gRmR

2M3
R (2m4

R − 9M4
R)

2

[

10m9
R (δg1MR − δM1gR)− 9m5

RM
4
R (17δg1MR − 3δM1gR)

+ 486mRM
8
R (δg1MR − δM1gR) + 10δm1gRm

8
RMR − 27δm1gRm

4
RM

5
R + 486δm1gRM

9
R

]

,

which is not satisfied by the expressions specified in Eqs. (12) and (13). That is, the
first solution to the condition of Eq. (5), given in Eq. (6), does not lead to self-consistent
renormalization.

Next, by taking into account Eqs. (12,14) in Eq. (11), we obtain the following condition
which has to be satisfied by renormalized parameters bR, gR, mR and MR:

g2R (7bRgRm
2
RMR + 2b2RM

2
R + 6g2Rm

4
R)

M4
R

= 0 . (17)

Eq. (17) has two solutions

bR = −2gRm
2
R

MR
, bR = −3gRm

2
R

2MR
. (18)

However, analogously to the above case, only one, namely

bR = −3gRm
2
R

2MR
(19)
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leads to a self-consistent condition. Substituting Eq. (19) in Eq. (16) leads to

λR =
3g2Rm

2
R

4M2
R

. (20)

As mentioned above, Eqs. (19) and (20) can be satisfied only if analogous relations hold for
corresponding bare quantities, i.e. we have

b = −3gm2

2M
, λ =

3g2m2

4M2
. (21)

This fixes uniquely the coupling constants of the scalar self-interactions to the values corre-
sponding to spontaneously broken gauge symmetry in the unitary gauge.

III. INCLUSION OF THE ELECTROMAGNETIC INTERACTION

To have massless spin-one particles, the photons, in the spectrum of the theory it is neces-
sary that the Lagrangian is invariant under local gauge U(1) transformations [1]. Therefore,
we introduce an Abelian gauge field Bµ and its coupling to the charged vector fields and
also a gauge-invariant mixing term of the neutral vector fields. The resulting Lagrangian
reads (with a = 0)

L = −1

4
BµνB

µν − 1

4
Ga

µνG
aµν +

1

2
V a
µ V

aµ
(

M − g

2
Φ
)2

− gA1ǫ
abc ǫµναβV a

µ V
b
ν ∂αV

c
β ,

+
c

2
Bµν V 3

µν +
κ

2
ǫ3ab BµνV a

µ V
b
ν +

1

2
∂µΦ ∂µΦ− m2

2
Φ2

(

1− g

4M
Φ
)2

, (22)

where

Bµν = ∂µBν − ∂νBµ , V a
µν = ∂µV

a
ν − ∂νV

a
µ ,

Ga
µν = V a

µν − g ǫabc V b
µV

c
ν + e ǫ3ab

(

BµV
b
ν −BνV

b
µ

)

, (23)

and we have substituted the expressions of Eq. (21). To diagonalize the Lagrangian, Eq. (22),
we introduce new vector fields Aµ, Zµ and W±

µ as follows:

Bµ = Aµ +
c√

1− c2
Zµ ,

V ±

µ = (V 1
µ ∓ iV 2

µ )/
√
2 = W±

µ , V 3
µ =

Zµ√
1− c2

. (24)

Next, we analyze the conditions of perturbative renormalizability. We again split the
bare parameters as p = pR +

∑

∞

i=1 ~
iδpi and fix the counterterms such that they cancel

divergences in physical quantities.
The undressed propagators of the Z and W± vector bosons read

i SZ,W
0,µν (p) = −i

gµν − pµpν
M2

Z,W

p2 −M2
Z,W + i 0+

, (25)
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where MW = M and MZ = M/
√
1− c2. We parameterize the sum of all one-particle-

irreducible diagrams contributing to the two-point functions as

iΠZ,W
µν (p) = i

[

gµνΠ
Z,W
1 (p2) + pµpν Π

Z,W
2 (p2)

]

. (26)

The corresponding dressed propagators have the form

i SZ,W
µν (p) = −i

gµν − pµpν
1+ΠZ,W

2
(p2)

M2

Z,W
+ΠZ,W

1
(p2)+p2ΠZ,W

2
(p2)

p2 −M2
Z,W −ΠZ,W

1 (p2) + i 0+
. (27)

The pole masses are obtained from the solutions to the following equations:

zZ,W −M2
Z,W − Π1(zZ,W ) = 0 . (28)

In the vicinity of the pole the dressed propagators can be expanded as

i SZ,W
µν (p) = −i





Zr
Z,W

(

gµν − pµpν
zZ,W

)

p2 − zZ,W + i 0+
+R



 , (29)

where

Zr
Z,W =

1

1−ΠZ,W ′

1 (zZ,W )

is the wave-function renormalization constant and R denotes the non-pole part.
From Eq. (28) at one-loop order we have

zZ,W = M2
Z,W +Π1(M

2
Z,W ) . (30)

Substituting in Eq. (30)
MW = M = MR + ~ δM1

and

MZ =
M√
1− c2

=
MR

√

1− c2R
− ~ (δM1 (c

2
R − 1)− δc1cRMR)

(1− c2R)
3/2

and demanding that the pole masses of both the Z and the W bosons must be finite quan-
tities, we obtain

δM1 =
π2

12 (c2R − 1) 3m2
R

{

MR

[

4
(

c2R − 1
)

eRm
2
R

(

28c3RgR − 25cRgR − 3c2RκR − 6κR

)

+ 4
(

17c4R − 28c2R + 11
)

e2Rm
2
R + g2R

(

(

37c6R − 32c4R − 73c2R + 59
)

m2
R

− 18
(

2c6R − 6c4R + 7c2R − 3
)

M2
R

)

+ 2cR
(

23c4R − 78c2R + 46
)

gRm
2
RκR

+
(

−3c4R − 17c2R + 11
)

m2
Rκ

2
R

]

− 9 (c2R − 1) 3g2Rm
4
R

MR

}

,

δc1 = − π2

12cR (c2R − 1)
2

[

8
(

c2R − 1
)

eR
(

−2c3RgR + 3cRgR + 9c4RκR − 6c2RκR + 3κR

)

+ 4
(

3c6R − 22c4R + 30c2R − 11
)

e2R + 26c5RgRκR + c4R
(

106g2R + κ2
R

)

+ 20c3RgRκR + c2R
(

18κ2
R − 61g2R

)

− 30cRgRκR − 37c6Rg
2
R − 11κ2

R

]

. (31)
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Next, we calculate the one-loop contributions to the ΦZZ and ΦW+W− vertex functions
and demand that the divergences are cancelled in both quantities when taken on mass-
shell. Using Eq. (31), we obtain two expressions of δg1 resulting from the conditions of the
finiteness of the ΦZZ and ΦW+W− vertex functions:

δg
(Z)
1 =

π2gR
12 (c2R − 1) 3M4

R

[

c6R
(

8eRm
2
RM

2
RκR + e2R

(

8m2
RM

2
R − 18m4

R

)

+ g2R
(

6m2
RM

2
R

+ 19M4
R

)

+ 2m2
Rκ

2
R

(

9m2
R − 8M2

R

))

+ 2c5RgR
(

eR
(

12m2
RM

2
R − 18m4

R + 56M4
R

)

+ κR

(

−12m2
RM

2
R + 18m4

R + 23M4
R

))

+ c4R
(

−4eRM
2
RκR

(

4m2
R + 3M2

R

)

+ 2e2R
(

−8m2
RM

2
R + 9m4

R + 34M4
R

)

+ g2R
(

31M4
R − 18m2

RM
2
R

)

+ κ2
R

(

26m2
RM

2
R

− 18m4
R − 3M4

R

))

+ 4c3RgR
(

eR
(

−12m2
RM

2
R + 9m4

R − 53M4
R

)

− 3κR

(

−3m2
RM

2
R

+ 3m4
R + 13M4

R

))

− c2R
(

4eRM
2
RκR

(

3M2
R − 2m2

R

)

+ 2e2R
(

−4m2
RM

2
R + 3m4

R + 56M4
R

)

+ g2R
(

145M4
R − 12m2

RM
2
R

)

+ κ2
R

(

10m2
RM

2
R − 6m4

R + 17M4
R

))

− 4cRgR
(

eR
(

−6m2
RM

2
R + 3m4

R − 25M4
R

)

+ κR

(

3m2
RM

2
R − 3m4

R − 23M4
R

))

+ 12c7RgRm
4
R (eR − κR) + 6c8Rm

4
R

(

e2R − κ2
R

)

+M4
R

(

24eRκR + 44e2R + 86g2R + 11κ2
R

)

]

,

δg
(W )
1 =

π2gR
12 (c2R − 1) 3M4

R

[

2
(

c2R − 1
)

eR
(

c3RgR
(

3m4
R + 56M4

R

)

− cRgR
(

3m4
R + 50M4

R

)

− 2c2RM
2
RκR

(

2m2
R + 3M2

R

)

+ 4M2
RκR

(

m2
R − 3M2

R

))

+
(

c2R − 1
)

e2R
(

4
(

c2R − 1
)

m2
RM

2
R

+ 3
(

c2R − 1
)

m4
R + 4

(

17c2R − 11
)

M4
R

)

+ 2c5RgRκR

(

−20m2
RM

2
R + 2m4

R + 23M4
R

)

+ c4R
(

g2R
(

58m2
RM

2
R − 10m4

R + 31M4
R

)

+ κ2
R

(

−10m2
RM

2
R + 2m4

R − 3M4
R

))

− 4c3RgRκR

(

−23m2
RM

2
R + 2m4

R + 39M4
R

)

+ c2R
(

g2R
(

−32m2
RM

2
R + 5m4

R − 145M4
R

)

+ κ2
R

(

26m2
RM

2
R − 4m4

R − 17M4
R

))

+ 4cRgRκR

(

−13m2
RM

2
R +m4

R + 23M4
R

)

+ c6Rg
2
R

(

−26m2
RM

2
R + 5m4

R + 19M4
R

)

+ 86g2RM
4
R − 16m2

RM
2
Rκ

2
R

+ 2m4
Rκ

2
R + 11M4

Rκ
2
R

]

. (32)

The two expressions for the same counterterm have to coincide, leading to the following
condition:

π2gRm
2
R

12 (c2R − 1) 2M4
R

[

2
(

c2R − 1
)

eR
(

3cRgR
(

4M2
R − 3m2

R

)

+ 6c3RgRm
2
R + 4c2RM

2
RκR + 4M2

RκR

)

+
(

c2R − 1
)

e2R
((

6c4R − 6c2R − 3
)

m2
R + 4

(

2c2R − 1
)

M2
R

)

+ c4R
(

g2R
(

32M2
R − 5m2

R

)

+4κ2
R

(

3m2
R − 4M2

R

))

+ 4c3RgRκR

(

5m2
R + 4M2

R

)

+ c2R
(

g2R
(

5m2
R − 44M2

R

)

+4κ2
R

(

5M2
R − 2m2

R

))

− 8cRgRκR

(

m2
R + 5M2

R

)

− 12c5RgRm
2
RκR

−6c6Rm
2
Rκ

2
R + 2κ2

R

(

m2
R − 8M2

R

)

]

= 0 . (33)

By demanding that the same counterterm δg1 in combination with δM1 and

δm1 =
3π2g2RmR ((c2R − 1)m2

R + (3− 2c2R)M
2
R)

4 (c2R − 1)M2
R

, (34)

removes the divergences from the ΦΦΦ vertex function, we obtain another condition:

π2cRgRm
4
R

4 (c2R − 1) 2M5
R

[

c3R
(

e2R
(

4M2
R − 6m2

R

)

+ 4eRM
2
RκR + 3g2RM

2
R + 2κ2

R

(

3m2
R − 4M2

R

))
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−12c2RgR (eR − κR)
(

m2
R −M2

R

)

+ cR
(

e2R
(

3m2
R − 4M2

R

)

− 4eRM
2
RκR − 6g2RM

2
R

+κ2
R

(

5M2
R − 3m2

R

))

+ 6c4RgRm
2
R (eR − κR) + 3c5Rm

2
R

(

e2R − κ2
R

)

+6gR
(

eR
(

m2
R − 2M2

R

)

+ κR

(

M2
R −m2

R

))

]

= 0 . (35)

One more condition is obtained by calculating the one-loop contributions to the ZW+W−

vertex function and demanding that its divergent part proportional to the Lorentz-structure
with the product of three momenta (i.e. containing no metric tensor) vanishes. The resulting
expression has the form:

cR(eR − κR)
2(4cRgR + 3 eR + κR)

(1− c2R)
3/2

M2
R

= 0 . (36)

Eqs. (33), (35) and (36) fix κR and cR to the following unique expressions:

κR = eR, cR = −eR
gR

. (37)

As argued above, Eq. (37) leads to analogous relations for corresponding bare parameters
of the effective Lagrangian.

Thus all parameters of our LO effective Lagrangian of interacting photons, a scalar and
massive neutral and two charged vector bosons are uniquely fixed by the self-consitsency
conditions such that the Lagrangian corresponding to the electroweak sector of the Standard
Model in unitary gauge is obtained.

IV. SUMMARY

In the current work we extended the study of Ref. [6] where following the modern point
of view of the Standard Model as the leading order approximation of an effective field theory
we analyzed the most general Lorentz-invariant leading order effective Lagrangian of massive
vector bosons interacting with a massive scalar field. Here leading order means interaction
terms with couplings of non-negative mass dimensions.

In Ref. [6] we analyzed the conditions of perturbative renormalizability and scale sepa-
ration applied to all three- and four-point functions at one-loop order. These conditions in
combination with the second class constraints imposed on systems with spin-one particles
led to severe restrictions on the interaction terms of the leading order Lagrangian. However,
two coupling constants of the self-interactions of the scalar field remained unfixed. In the
current work, using the condition of perturbative renormalizability and scale separation for
three-, four- and five-point functions of the scalar field at one-loop order, we were able to
fix the remaining two free couplings. Next, we included the coupling to the electromagnetic
interaction and again demanded self-consistency in the sense of EFT. Analyzing the renor-
malizability conditions of the various three-point vertex functions we fixed the two additional
free parameters appearing in the most general effective Lagrangian. As the result of this
analysis the Lagrangian with spontaneously broken SU(2)×U(1) gauge symmetry taken in
unitary gauge naturally appears as the unique leading-order Lagrangian of a self-consistent
EFT of a massive scalar interacting with neutral and charged massive vector bosons and the
electromagnetic field. It is well-known that such a Lagrangian leads to a well-defined finite
S-matrix [15].
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The inclusion of the fermionic degrees of freedom is the last step for completing this
program of deriving the leading order EFT Lagrangian of the electroweak interaction and
will be considered in a forthcoming publication.
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